Lemma 4.43.6. Let $\mathcal{C}$ be a monoidal category. If $Y$ is a left dual to $X$, then

functorially in $Z$ and $Z'$.

Lemma 4.43.6. Let $\mathcal{C}$ be a monoidal category. If $Y$ is a left dual to $X$, then

\[ \mathop{\mathrm{Mor}}\nolimits (Z' \otimes X, Z) = \mathop{\mathrm{Mor}}\nolimits (Z', Z \otimes Y) \quad \text{and}\quad \mathop{\mathrm{Mor}}\nolimits (Y \otimes Z', Z) = \mathop{\mathrm{Mor}}\nolimits (Z', X \otimes Z) \]

functorially in $Z$ and $Z'$.

**Proof.**
Consider the maps

\[ \mathop{\mathrm{Mor}}\nolimits (Z' \otimes X, Z) \to \mathop{\mathrm{Mor}}\nolimits (Z' \otimes X \otimes Y, Z \otimes Y) \to \mathop{\mathrm{Mor}}\nolimits (Z', Z \otimes Y) \]

where we use $\eta $ in the second arrow and the sequence of maps

\[ \mathop{\mathrm{Mor}}\nolimits (Z', Z \otimes Y) \to \mathop{\mathrm{Mor}}\nolimits (Z' \otimes X, Z \otimes Y \otimes X) \to \mathop{\mathrm{Mor}}\nolimits (Z' \otimes X, Z) \]

where we use $\epsilon $ in the second arrow. A straightforward calculation using the properties of $\eta $ and $\epsilon $ shows that the compositions of these are mutually inverse. Similarly for the other equality. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: