Example 4.35.5. Let $\mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) = \{ A, B, T\} $ and $\mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(A, B) = \{ f\} $, $\mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(B, T) = \{ g\} $, $\mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(A, T) = \{ h\} = \{ gf\} , $ plus the identity morphism for each object. See the diagram below for a picture of this category. Now let $\mathop{\mathrm{Ob}}\nolimits (\mathcal{S}) = \{ A', B', T'\} $ and $\mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(A', B') = \emptyset $, $\mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(B', T') = \{ g'\} $, $\mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(A', T') = \{ h'\} , $ plus the identity morphisms. The functor $p : \mathcal{S} \to \mathcal{C}$ is obvious. Then for every $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, $\mathcal{S}_ U$ is the category with one object and the identity morphism on that object, so a groupoid, but the morphism $f: A \to B$ cannot be lifted. Similarly, if we declare $\mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(A', B') = \{ f'_1, f'_2\} $ and $ \mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(A', T') = \{ h'\} = \{ g'f'_1 \} = \{ g'f'_2\} $, then the fibre categories are the same and $f: A \to B$ in the diagram below has two lifts.
\[ \xymatrix{ B' \ar[r]^{g'} & T' & & B \ar[r]^ g & T & \\ A' \ar@{-->}[u]^{??} \ar[ru]_{h'} & & \ar@{}[u]^{above} & A \ar[u]^ f \ar[ru]_{gf = h} & \\ } \]
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: