The Stacks project

Example 4.35.5. Let $\mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) = \{ A, B, T\} $ and $\mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(A, B) = \{ f\} $, $\mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(B, T) = \{ g\} $, $\mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(A, T) = \{ h\} = \{ gf\} , $ plus the identity morphism for each object. See the diagram below for a picture of this category. Now let $\mathop{\mathrm{Ob}}\nolimits (\mathcal{S}) = \{ A', B', T'\} $ and $\mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(A', B') = \emptyset $, $\mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(B', T') = \{ g'\} $, $\mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(A', T') = \{ h'\} , $ plus the identity morphisms. The functor $p : \mathcal{S} \to \mathcal{C}$ is obvious. Then for every $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, $\mathcal{S}_ U$ is the category with one object and the identity morphism on that object, so a groupoid, but the morphism $f: A \to B$ cannot be lifted. Similarly, if we declare $\mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(A', B') = \{ f'_1, f'_2\} $ and $ \mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(A', T') = \{ h'\} = \{ g'f'_1 \} = \{ g'f'_2\} $, then the fibre categories are the same and $f: A \to B$ in the diagram below has two lifts.

\[ \xymatrix{ B' \ar[r]^{g'} & T' & & B \ar[r]^ g & T & \\ A' \ar@{-->}[u]^{??} \ar[ru]_{h'} & & \ar@{}[u]^{above} & A \ar[u]^ f \ar[ru]_{gf = h} & \\ } \]

Comments (0)

There are also:

  • 2 comment(s) on Section 4.35: Categories fibred in groupoids

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02C4. Beware of the difference between the letter 'O' and the digit '0'.