Example 4.35.5. Let \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) = \{ A, B, T\} and \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(A, B) = \{ f\} , \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(B, T) = \{ g\} , \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(A, T) = \{ h\} = \{ gf\} , plus the identity morphism for each object. See the diagram below for a picture of this category. Now let \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}) = \{ A', B', T'\} and \mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(A', B') = \emptyset , \mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(B', T') = \{ g'\} , \mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(A', T') = \{ h'\} , plus the identity morphisms. The functor p : \mathcal{S} \to \mathcal{C} is obvious. Then for every U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}), \mathcal{S}_ U is the category with one object and the identity morphism on that object, so a groupoid, but the morphism f: A \to B cannot be lifted. Similarly, if we declare \mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(A', B') = \{ f'_1, f'_2\} and \mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(A', T') = \{ h'\} = \{ g'f'_1 \} = \{ g'f'_2\} , then the fibre categories are the same and f: A \to B in the diagram below has two lifts.
\xymatrix{ B' \ar[r]^{g'} & T' & & B \ar[r]^ g & T & \\ A' \ar@{-->}[u]^{??} \ar[ru]_{h'} & & \ar@{}[u]^{above} & A \ar[u]^ f \ar[ru]_{gf = h} & \\ }
Comments (0)
There are also: