Lemma 4.17.6. Let \mathcal{I} and \mathcal{J} be a categories and denote p : \mathcal{I} \times \mathcal{J} \to \mathcal{J} the projection. If \mathcal{I} is connected, then for a diagram M : \mathcal{J} \to \mathcal{C} the colimit \mathop{\mathrm{colim}}\nolimits _\mathcal {J} M exists if and only if \mathop{\mathrm{colim}}\nolimits _{\mathcal{I} \times \mathcal{J}} M \circ p exists and if so these colimits are equal.
Proof. This is a special case of Lemma 4.17.5. \square
Comments (0)
There are also: