The Stacks project

Theorem 4.25.3 (Adjoint functor theorem). Let $G : \mathcal{C} \to \mathcal{D}$ be a functor of big categories. Assume $\mathcal{C}$ has limits, $G$ commutes with them, and for every object $y$ of $\mathcal{D}$ there exists a set of pairs $(x_ i, f_ i)_{i \in I}$ with $x_ i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, $f_ i \in \mathop{Mor}\nolimits _\mathcal {D}(y, G(x_ i))$ such that for any pair $(x, f)$ with $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, $f \in \mathop{Mor}\nolimits _\mathcal {D}(y, G(x))$ there is an $i$ and a morphism $h : x_ i \to x$ such that $f = G(h) \circ f_ i$. Then $G$ has a left adjoint $F$.

Proof. The assumptions imply that for every object $y$ of $\mathcal{D}$ the functor $x \mapsto \mathop{Mor}\nolimits _\mathcal {D}(y, G(x))$ satisfies the assumptions of Lemma 4.25.1. Thus it is representable by an object, let's call it $F(y)$. An application of Yoneda's lemma (Lemma 4.3.5) turns the rule $y \mapsto F(y)$ into a functor which by construction is an adjoint to $G$. We omit the details. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 4.25: A criterion for representability

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AHQ. Beware of the difference between the letter 'O' and the digit '0'.