The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

4.5 Coproducts of pairs

Definition 4.5.1. Let $x, y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. A coproduct, or amalgamated sum of $x$ and $y$ is an object $x \amalg y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ together with morphisms $i \in \mathop{Mor}\nolimits _{\mathcal C}(x, x \amalg y)$ and $j \in \mathop{Mor}\nolimits _{\mathcal C}(y, x \amalg y)$ such that the following universal property holds: for any $w \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and morphisms $\alpha \in \mathop{Mor}\nolimits _{\mathcal C}(x, w)$ and $\beta \in \mathop{Mor}\nolimits _\mathcal {C}(y, w)$ there is a unique $\gamma \in \mathop{Mor}\nolimits _{\mathcal C}(x \amalg y, w)$ making the diagram

\[ \xymatrix{ & y \ar[d]^ j \ar[rrdd]^\beta \\ x \ar[r]^ i \ar[rrrd]_\alpha & x \amalg y \ar@{-->}[rrd]^\gamma \\ & & & w } \]

commute.

If a coproduct exists it is unique up to unique isomorphism. This follows from the Yoneda lemma (applied to the opposite category) as the definition requires $x \amalg y$ to be an object of $\mathcal{C}$ such that

\[ \mathop{Mor}\nolimits _\mathcal {C}(x \amalg y, w) = \mathop{Mor}\nolimits _\mathcal {C}(x, w) \times \mathop{Mor}\nolimits _\mathcal {C}(y, w) \]

functorially in $w$.

Definition 4.5.2. We say the category $\mathcal{C}$ has coproducts of pairs of objects if a coproduct $x \amalg y$ exists for any $x, y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$.

We use this terminology to distinguish this notion from the notion of “having coproducts” or “having finite coproducts” which usually means something else (in particular it always implies there exists an initial object in $\mathcal{C}$).


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04AN. Beware of the difference between the letter 'O' and the digit '0'.