Lemma 4.35.11. Let \mathcal{C} be a category. Let \mathcal{S}_ i, i = 1, 2, 3, 4 be categories fibred in groupoids over \mathcal{C}. Suppose that \varphi : \mathcal{S}_1 \to \mathcal{S}_2 and \psi : \mathcal{S}_3 \to \mathcal{S}_4 are equivalences over \mathcal{C}. Then
\mathop{\mathrm{Mor}}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{S}_2, \mathcal{S}_3) \longrightarrow \mathop{\mathrm{Mor}}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{S}_1, \mathcal{S}_4), \quad \alpha \longmapsto \psi \circ \alpha \circ \varphi
is an equivalence of categories.
Comments (0)
There are also: