Processing math: 100%

The Stacks project

Lemma 4.35.11. Let \mathcal{C} be a category. Let \mathcal{S}_ i, i = 1, 2, 3, 4 be categories fibred in groupoids over \mathcal{C}. Suppose that \varphi : \mathcal{S}_1 \to \mathcal{S}_2 and \psi : \mathcal{S}_3 \to \mathcal{S}_4 are equivalences over \mathcal{C}. Then

\mathop{\mathrm{Mor}}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{S}_2, \mathcal{S}_3) \longrightarrow \mathop{\mathrm{Mor}}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{S}_1, \mathcal{S}_4), \quad \alpha \longmapsto \psi \circ \alpha \circ \varphi

is an equivalence of categories.

Proof. This is a generality and holds in any 2-category. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 4.35: Categories fibred in groupoids

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.