Definition 4.4.1. Let x, y\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). A product of x and y is an object x \times y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) together with morphisms p\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times y, x) and q\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times y, y) such that the following universal property holds: for any w\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) and morphisms \alpha \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(w, x) and \beta \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(w, y) there is a unique \gamma \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(w, x \times y) making the diagram
commute.
Comments (0)
There are also: