The Stacks project

Lemma 4.14.9. Suppose that $M : \mathcal{I} \to \mathcal{C}$, and $N : \mathcal{J} \to \mathcal{C}$ are diagrams whose limits exist. Suppose $H : \mathcal{I} \to \mathcal{J}$ is a functor, and suppose $t : N \circ H \to M$ is a transformation of functors. Then there is a unique morphism

\[ \theta : \mathop{\mathrm{lim}}\nolimits _\mathcal {J} N \longrightarrow \mathop{\mathrm{lim}}\nolimits _\mathcal {I} M \]

such that all the diagrams

\[ \xymatrix{ \mathop{\mathrm{lim}}\nolimits _\mathcal {J} N \ar[d]^{\theta } \ar[r] & N_{H(i)} \ar[d]_{t_ i} \\ \mathop{\mathrm{lim}}\nolimits _\mathcal {I} M \ar[r] & M_ i } \]

commute.

Proof. Omitted. $\square$


Comments (1)

Comment #1017 by correction_bot on

In the diagram, should be .

There are also:

  • 3 comment(s) on Section 4.14: Limits and colimits

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 002L. Beware of the difference between the letter 'O' and the digit '0'.