Lemma 4.34.1. Let \mathcal{C} be a category. Let p : \mathcal{S} \to \mathcal{C} and p' : \mathcal{S}' \to \mathcal{C} be fibred categories. Let F : \mathcal{S} \to \mathcal{S}' be a 1-morphism of fibred categories over \mathcal{C}. Consider the category \mathcal{I}_{\mathcal{S}/\mathcal{S}'} over \mathcal{C} whose
objects are pairs (x, \alpha ) where x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}) and \alpha : x \to x is an automorphism with F(\alpha ) = \text{id},
morphisms (x, \alpha ) \to (y, \beta ) are given by morphisms \phi : x \to y such that
\xymatrix{ x\ar[r]_\phi \ar[d]_\alpha & y\ar[d]^{\beta } \\ x\ar[r]^\phi & y \\ }commutes, and
the functor \mathcal{I}_{\mathcal{S}/\mathcal{S}'} \to \mathcal{C} is given by (x, \alpha ) \mapsto p(x).
Then
there is an equivalence
\mathcal{I}_{\mathcal{S}/\mathcal{S}'} \longrightarrow \mathcal{S} \times _{\Delta , (\mathcal{S} \times _{\mathcal{S}'} \mathcal{S}), \Delta } \mathcal{S}in the (2, 1)-category of categories over \mathcal{C}, and
\mathcal{I}_{\mathcal{S}/\mathcal{S}'} is a fibred category over \mathcal{C}.
Comments (0)