Definition 4.2.1. A category \mathcal{C} consists of the following data:
A set of objects \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}).
For each pair x, y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) a set of morphisms \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, y).
For each triple x, y, z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) a composition map \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(y, z) \times \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, y) \to \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, z) , denoted (\phi , \psi ) \mapsto \phi \circ \psi .
These data are to satisfy the following rules:
For every element x\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) there exists a morphism \text{id}_ x\in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, x) such that \text{id}_ x \circ \phi = \phi and \psi \circ \text{id}_ x = \psi whenever these compositions make sense.
Composition is associative, i.e., (\phi \circ \psi ) \circ \chi = \phi \circ ( \psi \circ \chi ) whenever these compositions make sense.
Comments (0)
There are also: