Processing math: 100%

The Stacks project

Definition 4.2.1. A category \mathcal{C} consists of the following data:

  1. A set of objects \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}).

  2. For each pair x, y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) a set of morphisms \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, y).

  3. For each triple x, y, z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) a composition map \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(y, z) \times \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, y) \to \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, z) , denoted (\phi , \psi ) \mapsto \phi \circ \psi .

These data are to satisfy the following rules:

  1. For every element x\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) there exists a morphism \text{id}_ x\in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, x) such that \text{id}_ x \circ \phi = \phi and \psi \circ \text{id}_ x = \psi whenever these compositions make sense.

  2. Composition is associative, i.e., (\phi \circ \psi ) \circ \chi = \phi \circ ( \psi \circ \chi ) whenever these compositions make sense.


Comments (0)

There are also:

  • 7 comment(s) on Section 4.2: Definitions

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.