Definition 4.26.1. Let \mathcal{C} be a big1 category. An object X of \mathcal{C} is called a categorically compact if we have
\mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(X, \mathop{\mathrm{colim}}\nolimits _ i M_ i) = \mathop{\mathrm{colim}}\nolimits _ i \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(X, M_ i)
for every filtered diagram M : \mathcal{I} \to \mathcal{C} such that \mathop{\mathrm{colim}}\nolimits _ i M_ i exists.
Comments (0)