Lemma 4.39.8. Let \mathcal{C} be a category. The construction of Lemma 4.39.6 which associates to a category fibred in setoids a presheaf is compatible with products, in the sense that the presheaf associated to a 2-fibre product \mathcal{X} \times _\mathcal {Y} \mathcal{Z} is the fibre product of the presheaves associated to \mathcal{X}, \mathcal{Y}, \mathcal{Z}.
Proof. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). The lemma just says that
\mathop{\mathrm{Ob}}\nolimits ((\mathcal{X} \times _\mathcal {Y} \mathcal{Z})_ U)/\! \cong \quad \text{equals} \quad \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}_ U)/\! \cong \ \times _{\mathop{\mathrm{Ob}}\nolimits (\mathcal{Y}_ U)/\! \cong } \ \mathop{\mathrm{Ob}}\nolimits (\mathcal{Z}_ U)/\! \cong
the proof of which we omit. (But note that this would not be true in general if the category \mathcal{Y}_ U is not a setoid.) \square
Comments (0)