Definition 6.21.9. Suppose that f : X \to Y and g : Y \to Z are continuous maps of topological spaces. Suppose that \mathcal{F} is a sheaf on X, \mathcal{G} is a sheaf on Y, and \mathcal{H} is a sheaf on Z. Let \varphi : \mathcal{G} \to \mathcal{F} be an f-map. Let \psi : \mathcal{H} \to \mathcal{G} be an g-map. The composition of \varphi and \psi is the (g \circ f)-map \varphi \circ \psi defined by the commutativity of the diagrams
\xymatrix{ \mathcal{H}(W) \ar[rr]_{(\varphi \circ \psi )_ W} \ar[rd]_{\psi _ W} & & \mathcal{F}(f^{-1}g^{-1}W) \\ & \mathcal{G}(g^{-1}W) \ar[ru]_{\varphi _{g^{-1}W}} }
Comments (0)
There are also: