Lemma 6.21.10. Suppose that f : X \to Y and g : Y \to Z are continuous maps of topological spaces. Suppose that \mathcal{F} is a sheaf on X, \mathcal{G} is a sheaf on Y, and \mathcal{H} is a sheaf on Z. Let \varphi : \mathcal{G} \to \mathcal{F} be an f-map. Let \psi : \mathcal{H} \to \mathcal{G} be an g-map. Let x \in X be a point. The map on stalks (\varphi \circ \psi )_ x : \mathcal{H}_{g(f(x))} \to \mathcal{F}_ x is the composition
\mathcal{H}_{g(f(x))} \xrightarrow {\psi _{f(x)}} \mathcal{G}_{f(x)} \xrightarrow {\varphi _ x} \mathcal{F}_ x
Proof. Immediate from Definition 6.21.9 and the definition of the map on stalks above. \square
Comments (0)
There are also: