Lemma 6.24.3. Let f : X \to Y be a continuous map of topological spaces. Let \mathcal{O} be a presheaf of rings on Y. Let \mathcal{G} be a presheaf of \mathcal{O}-modules. Let \mathcal{F} be a presheaf of f_ p\mathcal{O}-modules. Then
\mathop{\mathrm{Mor}}\nolimits _{\textit{PMod}(f_ p\mathcal{O})}(f_ p\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{PMod}(\mathcal{O})}(\mathcal{G}, f_*\mathcal{F}).
Here we use Lemmas 6.24.2 and 6.24.1, and we think of f_*\mathcal{F} as an \mathcal{O}-module via the map i_\mathcal {O} : \mathcal{O} \to f_*f_ p\mathcal{O} (defined first in the proof of Lemma 6.21.3).
Proof.
Note that we have
\mathop{\mathrm{Mor}}\nolimits _{\textit{PAb}(X)}(f_ p\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{PAb}(Y)}(\mathcal{G}, f_*\mathcal{F}).
according to Section 6.22. So what we have to prove is that under this correspondence, the subsets of module maps correspond. In addition, the correspondence is determined by the rule
(\psi : f_ p\mathcal{G} \to \mathcal{F}) \longmapsto (f_*\psi \circ i_\mathcal {G} : \mathcal{G} \to f_* \mathcal{F})
and in the other direction by the rule
(\varphi : \mathcal{G} \to f_* \mathcal{F}) \longmapsto (c_\mathcal {F} \circ f_ p\varphi : f_ p\mathcal{G} \to \mathcal{F})
where i_\mathcal {G} and c_\mathcal {F} are as in Section 6.22. Hence, using the functoriality of f_* and f_ p we see that it suffices to check that the maps i_\mathcal {G} : \mathcal{G} \to f_* f_ p \mathcal{G} and c_\mathcal {F} : f_ p f_* \mathcal{F} \to \mathcal{F} are compatible with module structures, which we leave to the reader.
\square
Comments (0)
There are also: