Processing math: 100%

The Stacks project

Lemma 6.24.4. Let f : X \to Y be a continuous map of topological spaces. Let \mathcal{O} be a presheaf of rings on X. Let \mathcal{F} be a presheaf of \mathcal{O}-modules. Let \mathcal{G} be a presheaf of f_*\mathcal{O}-modules. Then

\mathop{\mathrm{Mor}}\nolimits _{\textit{PMod}(\mathcal{O})}( \mathcal{O} \otimes _{p, f_ pf_*\mathcal{O}} f_ p\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{PMod}(f_*\mathcal{O})}(\mathcal{G}, f_*\mathcal{F}).

Here we use Lemmas 6.24.2 and 6.24.1, and we use the map c_\mathcal {O} : f_ pf_*\mathcal{O} \to \mathcal{O} in the definition of the tensor product.

Proof. This follows from the equalities

\begin{eqnarray*} \mathop{\mathrm{Mor}}\nolimits _{\textit{PMod}(\mathcal{O})}( \mathcal{O} \otimes _{p, f_ pf_*\mathcal{O}} f_ p\mathcal{G}, \mathcal{F}) & = & \mathop{\mathrm{Mor}}\nolimits _{\textit{PMod}(f_ pf_*\mathcal{O})}( f_ p\mathcal{G}, \mathcal{F}_{f_ pf_*\mathcal{O}}) \\ & = & \mathop{\mathrm{Mor}}\nolimits _{\textit{PMod}(f_*\mathcal{O})}(\mathcal{G}, f_*(\mathcal{F}_{f_ pf_*\mathcal{O}})) \\ & = & \mathop{\mathrm{Mor}}\nolimits _{\textit{PMod}(f_*\mathcal{O})}(\mathcal{G}, f_*\mathcal{F}). \end{eqnarray*}

The first equality is Lemma 6.6.2. The second equality is Lemma 6.24.3. The third equality is given by the equality f_*(\mathcal{F}_{f_ pf_*\mathcal{O}}) = f_*\mathcal{F} of abelian sheaves which is f_*\mathcal{O}-linear. Namely, \text{id}_{f_*\mathcal{O}} corresponds to c_\mathcal {O} under the adjunction described in the proof of Lemma 6.21.3 and thus \text{id}_{f_*\mathcal{O}} = f_*c_\mathcal {O} \circ i_{f_*\mathcal{O}}. \square


Comments (0)

There are also:

  • 4 comment(s) on Section 6.24: Continuous maps and sheaves of modules

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.