Lemma 6.24.8. Let f : X \to Y be a continuous map of topological spaces. Let \mathcal{O} be a sheaf of rings on X. Let \mathcal{F} be a sheaf of \mathcal{O}-modules. Let \mathcal{G} be a sheaf of f_*\mathcal{O}-modules. Then
\mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}( \mathcal{O} \otimes _{f^{-1}f_*\mathcal{O}} f^{-1}\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(f_*\mathcal{O})}(\mathcal{G}, f_*\mathcal{F}).
Here we use Lemmas 6.24.6 and 6.24.5, and we use the canonical map f^{-1}f_*\mathcal{O} \to \mathcal{O} in the definition of the tensor product.
Proof.
This follows from the equalities
\begin{eqnarray*} \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}( \mathcal{O} \otimes _{f^{-1}f_*\mathcal{O}} f^{-1}\mathcal{G}, \mathcal{F}) & = & \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(f^{-1}f_*\mathcal{O})}( f^{-1}\mathcal{G}, \mathcal{F}_{f^{-1}f_*\mathcal{O}}) \\ & = & \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(f_*\mathcal{O})}(\mathcal{G}, f_*\mathcal{F}). \end{eqnarray*}
which are a combination of Lemma 6.20.2 and 6.24.7.
\square
Comments (0)
There are also: