Definition 6.26.1. Let $(f, f^\sharp ) : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces.

1. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_ X$-modules. We define the pushforward of $\mathcal{F}$ as the sheaf of $\mathcal{O}_ Y$-modules which as a sheaf of abelian groups equals $f_*\mathcal{F}$ and with module structure given by the restriction via $f^\sharp : \mathcal{O}_ Y \to f_*\mathcal{O}_ X$ of the module structure given in Lemma 6.24.5.

2. Let $\mathcal{G}$ be a sheaf of $\mathcal{O}_ Y$-modules. We define the pullback $f^*\mathcal{G}$ to be the sheaf of $\mathcal{O}_ X$-modules defined by the formula

$f^*\mathcal{G} = \mathcal{O}_ X \otimes _{f^{-1}\mathcal{O}_ Y} f^{-1}\mathcal{G}$

where the ring map $f^{-1}\mathcal{O}_ Y \to \mathcal{O}_ X$ is the map corresponding to $f^\sharp$, and where the module structure is given by Lemma 6.24.6.

There are also:

• 3 comment(s) on Section 6.26: Morphisms of ringed spaces and modules

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).