The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

6.27 Skyscraper sheaves and stalks

Definition 6.27.1. Let $X$ be a topological space.

  1. Let $x \in X$ be a point. Denote $i_ x : \{ x\} \to X$ the inclusion map. Let $A$ be a set and think of $A$ as a sheaf on the one point space $\{ x\} $. We call $i_{x, *}A$ the skyscraper sheaf at $x$ with value $A$.

  2. If in (1) above $A$ is an abelian group then we think of $i_{x, *}A$ as a sheaf of abelian groups on $X$.

  3. If in (1) above $A$ is an algebraic structure then we think of $i_{x, *}A$ as a sheaf of algebraic structures.

  4. If $(X, \mathcal{O}_ X)$ is a ringed space, then we think of $i_ x : \{ x\} \to X$ as a morphism of ringed spaces $(\{ x\} , \mathcal{O}_{X, x}) \to (X, \mathcal{O}_ X)$ and if $A$ is a $\mathcal{O}_{X, x}$-module, then we think of $i_{x, *}A$ as a sheaf of $\mathcal{O}_ X$-modules.

  5. We say a sheaf of sets $\mathcal{F}$ is a skyscraper sheaf if there exists an point $x$ of $X$ and a set $A$ such that $\mathcal{F} \cong i_{x, *}A$.

  6. We say a sheaf of abelian groups $\mathcal{F}$ is a skyscraper sheaf if there exists an point $x$ of $X$ and an abelian group $A$ such that $\mathcal{F} \cong i_{x, *}A$ as sheaves of abelian groups.

  7. We say a sheaf of algebraic structures $\mathcal{F}$ is a skyscraper sheaf if there exists an point $x$ of $X$ and an algebraic structure $A$ such that $\mathcal{F} \cong i_{x, *}A$ as sheaves of algebraic structures.

  8. If $(X, \mathcal{O}_ X)$ is a ringed space and $\mathcal{F}$ is a sheaf of $\mathcal{O}_ X$-modules, then we say $\mathcal{F}$ is a skyscraper sheaf if there exists a point $x \in X$ and a $\mathcal{O}_{X, x}$-module $A$ such that $\mathcal{F} \cong i_{x, *}A$ as sheaves of $\mathcal{O}_ X$-modules.

Lemma 6.27.2. Let $X$ be a topological space, $x \in X$ a point, and $A$ a set. For any point $x' \in X$ the stalk of the skyscraper sheaf at $x$ with value $A$ at $x'$ is

\[ (i_{x, *}A)_{x'} = \left\{ \begin{matrix} A & \text{if} & x' \in \overline{\{ x\} } \\ \{ *\} & \text{if} & x' \not\in \overline{\{ x\} } \end{matrix} \right. \]

A similar description holds for the case of abelian groups, algebraic structures and sheaves of modules.

Proof. Omitted. $\square$

Lemma 6.27.3. Let $X$ be a topological space, and let $x \in X$ a point. The functors $\mathcal{F} \mapsto \mathcal{F}_ x$ and $A \mapsto i_{x, *}A$ are adjoint. In a formula

\[ \mathop{Mor}\nolimits _{\textit{Sets}}(\mathcal{F}_ x, A) = \mathop{Mor}\nolimits _{\mathop{\mathit{Sh}}\nolimits (X)}(\mathcal{F}, i_{x, *}A). \]

A similar statement holds for the case of abelian groups, algebraic structures. In the case of sheaves of modules we have

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X, x}}(\mathcal{F}_ x, A) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, i_{x, *}A). \]

Proof. Omitted. Hint: The stalk functor can be seen as the pullback functor for the morphism $i_ x : \{ x\} \to X$. Then the adjointness follows from adjointness of $i_ x^{-1}$ and $i_{x, *}$ (resp. $i_ x^*$ and $i_{x, *}$ in the case of sheaves of modules). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0099. Beware of the difference between the letter 'O' and the digit '0'.