Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 6.27.2. Let $X$ be a topological space, $x \in X$ a point, and $A$ a set. For any point $x' \in X$ the stalk of the skyscraper sheaf at $x$ with value $A$ at $x'$ is

\[ (i_{x, *}A)_{x'} = \left\{ \begin{matrix} A & \text{if} & x' \in \overline{\{ x\} } \\ \{ *\} & \text{if} & x' \not\in \overline{\{ x\} } \end{matrix} \right. \]

A similar description holds for the case of abelian groups, algebraic structures and sheaves of modules.

Proof. Omitted. $\square$


Comments (0)

There are also:

  • 1 comment(s) on Section 6.27: Skyscraper sheaves and stalks

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.