The Stacks project

6.33 Glueing sheaves

In this section we glue sheaves defined on the members of a covering of $X$. We first deal with maps.

Lemma 6.33.1. Let $X$ be a topological space. Let $X = \bigcup U_ i$ be an open covering. Let $\mathcal{F}$, $\mathcal{G}$ be sheaves of sets on $X$. Given a collection

\[ \varphi _ i : \mathcal{F}|_{U_ i} \longrightarrow \mathcal{G}|_{U_ i} \]

of maps of sheaves such that for all $i, j \in I$ the maps $\varphi _ i, \varphi _ j$ restrict to the same map $\mathcal{F}|_{U_ i \cap U_ j} \to \mathcal{G}|_{U_ i \cap U_ j}$ then there exists a unique map of sheaves

\[ \varphi : \mathcal{F} \longrightarrow \mathcal{G} \]

whose restriction to each $U_ i$ agrees with $\varphi _ i$.

Proof. For each open subset $U \subset X$ define

\[ \varphi _ U : \mathcal{F}(U) \to \mathcal{G}(U), \quad s \mapsto \varphi _ U(s) \]

where $\varphi _ U(s)$ is the unique section verifying

\[ (\varphi _ U(s))|_{U \cap U_ i} = (\varphi _ i)_{U \cap U_ i}(s|_{U \cap U_ i}). \]

Existence and uniqueness of such a section follows from the sheaf axioms due to the fact that

\begin{align*} ((\varphi _ i)_{U \cap U_ i}(s|_{U \cap U_ i}))|_{U \cap U_ i \cap U_ j} & = (\varphi _ i)_{U \cap U_ i \cap U_ j}(s|_{U \cap U_ i \cap U_ j})\\ & = (\varphi _ j)_{U \cap U_ i \cap U_ j}(s|_{U \cap U_ i \cap U_ j})\\ & = ((\varphi _ j)_{U \cap U_ j}(s|_{U \cap U_ j}))|_{U \cap U_ i \cap U_ j}. \end{align*}

This family of maps gives us indeed a map of sheaves: Let $V \subset U \subset X$ be open subsets then

\[ (\varphi _ U(s))|_ V = \varphi _ V(s|_ V) \]

since for each $i \in I$ the following holds

\begin{align*} (\varphi _ U(s))|_{V \cap U_ i} & = ((\varphi _ U(s))|_{U \cap U_ i})|_{V \cap U_ i}\\ & = ((\varphi _ i)_{U \cap U_ i}(s|_{U \cap U_ i}))|_{V \cap U_ i}\\ & = (\varphi _ i)_{V \cap U_ i}(s|_{V \cap U_ i})\\ & = \varphi _ V(s_{V})|_{V \cap U_ i}. \end{align*}

Furthermore, its restriction to each $U_ i$ agrees with $\varphi _ i$ since given $U \subset X$ open subset and $s \in \mathcal{F}(U \cap U_ i)$ then

\begin{align*} \varphi _{U \cap U_ i}(s) & = \varphi _{U \cap U_ i}(s)|_{U \cap U_ i}\\ & = (\varphi _ i)_{U \cap U_ i}(s|_{U \cap U_ i})\\ & = (\varphi _ i)_{U \cap U_ i}(s). \end{align*}
$\square$

The previous lemma implies that given two sheaves $\mathcal{F}$, $\mathcal{G}$ on the topological space $X$ the rule

\[ U \longmapsto \mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (U)}( \mathcal{F}|_ U, \mathcal{G}|_ U) \]

defines a sheaf. This is a kind of internal hom sheaf. It is seldom used in the setting of sheaves of sets, and more usually in the setting of sheaves of modules, see Modules, Section 17.22.

Let $X$ be a topological space. Let $X = \bigcup _{i\in I} U_ i$ be an open covering. For each $i \in I$ let $\mathcal{F}_ i$ be a sheaf of sets on $U_ i$. For each pair $i, j \in I$, let

\[ \varphi _{ij} : \mathcal{F}_ i|_{U_ i \cap U_ j} \longrightarrow \mathcal{F}_ j|_{U_ i \cap U_ j} \]

be an isomorphism of sheaves of sets. Assume in addition that for every triple of indices $i, j, k \in I$ the following diagram is commutative

\[ \xymatrix{ \mathcal{F}_ i|_{U_ i \cap U_ j \cap U_ k} \ar[rr]_{\varphi _{ik}} \ar[rd]_{\varphi _{ij}} & & \mathcal{F}_ k|_{U_ i \cap U_ j \cap U_ k} \\ & \mathcal{F}_ j|_{U_ i \cap U_ j \cap U_ k} \ar[ru]_{\varphi _{jk}} } \]

We will call such a collection of data $(\mathcal{F}_ i, \varphi _{ij})$ a glueing data for sheaves of sets with respect to the covering $X = \bigcup U_ i$.

Lemma 6.33.2. Let $X$ be a topological space. Let $X = \bigcup _{i\in I} U_ i$ be an open covering. Given any glueing data $(\mathcal{F}_ i, \varphi _{ij})$ for sheaves of sets with respect to the covering $X = \bigcup U_ i$ there exists a sheaf of sets $\mathcal{F}$ on $X$ together with isomorphisms

\[ \varphi _ i : \mathcal{F}|_{U_ i} \to \mathcal{F}_ i \]

such that the diagrams

\[ \xymatrix{ \mathcal{F}|_{U_ i \cap U_ j} \ar[r]_{\varphi _ i} \ar[d]_{\text{id}} & \mathcal{F}_ i|_{U_ i \cap U_ j} \ar[d]^{\varphi _{ij}} \\ \mathcal{F}|_{U_ i \cap U_ j} \ar[r]^{\varphi _ j} & \mathcal{F}_ j|_{U_ i \cap U_ j} } \]

are commutative.

Proof. First proof. In this proof we give a formula for the set of sections of $\mathcal{F}$ over an open $W \subset X$. Namely, we define

\[ \mathcal{F}(W) = \{ (s_ i)_{i \in I} \mid s_ i \in \mathcal{F}_ i(W \cap U_ i), \varphi _{ij}(s_ i|_{W \cap U_ i \cap U_ j}) = s_ j|_{W \cap U_ i \cap U_ j} \} . \]

Restriction mappings for $W' \subset W$ are defined by the restricting each of the $s_ i$ to $W' \cap U_ i$. The sheaf condition for $\mathcal{F}$ follows immediately from the sheaf condition for each of the $\mathcal{F}_ i$.

We still have to prove that $\mathcal{F}|_{U_ i}$ maps isomorphically to $\mathcal{F}_ i$. Let $W \subset U_ i$. In this case the condition in the definition of $\mathcal{F}(W)$ implies that $s_ j = \varphi _{ij}(s_ i|_{W \cap U_ j})$. And the commutativity of the diagrams in the definition of a glueing data assures that we may start with any section $s \in \mathcal{F}_ i(W)$ and obtain a compatible collection by setting $s_ i = s$ and $s_ j = \varphi _{ij}(s_ i|_{W \cap U_ j})$.

Second proof (sketch). Let $\mathcal{B}$ be the set of opens $U \subset X$ such that $U \subset U_ i$ for some $i \in I$. Then $\mathcal{B}$ is a base for the topology on $X$. For $U \in \mathcal{B}$ we pick $i \in I$ with $U \subset U_ i$ and we set $\mathcal{F}(U) = \mathcal{F}_ i(U)$. Using the isomorphisms $\varphi _{ij}$ we see that this prescription is “independent of the choice of $i$”. Using the restriction mappings of $\mathcal{F}_ i$ we find that $\mathcal{F}$ is a sheaf on $\mathcal{B}$. Finally, use Lemma 6.30.6 to extend $\mathcal{F}$ to a unique sheaf $\mathcal{F}$ on $X$. $\square$

Lemma 6.33.3. Let $X$ be a topological space. Let $X = \bigcup U_ i$ be an open covering. Let $(\mathcal{F}_ i, \varphi _{ij})$ be a glueing data of sheaves of abelian groups, resp. sheaves of algebraic structures, resp. sheaves of $\mathcal{O}$-modules for some sheaf of rings $\mathcal{O}$ on $X$. Then the construction in the proof of Lemma 6.33.2 above leads to a sheaf of abelian groups, resp. sheaf of algebraic structures, resp. sheaf of $\mathcal{O}$-modules.

Proof. This is true because in the construction the set of sections $\mathcal{F}(W)$ over an open $W$ is given as the equalizer of the maps

\[ \xymatrix{ \prod _{i \in I} \mathcal{F}_ i(W \cap U_ i) \ar@<1ex>[r] \ar@<-1ex>[r] & \prod _{i, j\in I} \mathcal{F}_ i(W \cap U_ i \cap U_ j) } \]

And in each of the cases envisioned this equalizer gives an object in the relevant category whose underlying set is the object considered in the cited lemma. $\square$

Lemma 6.33.4. Let $X$ be a topological space. Let $X = \bigcup _{i\in I} U_ i$ be an open covering. The functor which associates to a sheaf of sets $\mathcal{F}$ the following collection of glueing data

\[ (\mathcal{F}|_{U_ i}, (\mathcal{F}|_{U_ i})|_{U_ i \cap U_ j} \to (\mathcal{F}|_{U_ j})|_{U_ i \cap U_ j} ) \]

with respect to the covering $X = \bigcup U_ i$ defines an equivalence of categories between $\mathop{\mathit{Sh}}\nolimits (X)$ and the category of glueing data. A similar statement holds for abelian sheaves, resp. sheaves of algebraic structures, resp. sheaves of $\mathcal{O}$-modules.

Proof. The functor is fully faithful by Lemma 6.33.1 and essentially surjective (via an explicitly given quasi-inverse functor) by Lemma 6.33.2. $\square$

This lemma means that if the sheaf $\mathcal{F}$ was constructed from the glueing data $(\mathcal{F}_ i, \varphi _{ij})$ and if $\mathcal{G}$ is a sheaf on $X$, then a morphism $f : \mathcal{F} \to \mathcal{G}$ is given by a collection of morphisms of sheaves

\[ f_ i : \mathcal{F}_ i \longrightarrow \mathcal{G}|_{U_ i} \]

compatible with the glueing maps $\varphi _{ij}$. Similarly, to give a morphism of sheaves $g : \mathcal{G} \to \mathcal{F}$ is the same as giving a collection of morphisms of sheaves

\[ g_ i : \mathcal{G}|_{U_ i} \longrightarrow \mathcal{F}_ i \]

compatible with the glueing maps $\varphi _{ij}$.


Comments (6)

Comment #6829 by Elías Guisado on

On Lemma 6.33.4, what is a morphism in the "category of glueing data"? I propose the following definition: Let be an open covering of , and let be two instances of gluing data for sheaves of sets with respect to the cover . A morphism between them is a family of morphisms of sheaves of sets that are compatible with the isomorphisms and in the sense that the square commutes.

Would this be the correct definition with which Lemma 6.33.4 holds?

Comment #6830 by Elías Guisado on

(I don't know why the commutative diagram and some subscripts messed up on the LaTeX compilation. On the preview before posting it was all alright)

Comment #7766 by Jaime Benabent on

Shouldn't one , in the definition of glueing data, require ? or is it somehow already implicit in the definition?

Comment #7767 by Jaime Benabent on

Shouldn't one , in the definition of glueing data, require ? or is it somehow already implicit in the definition?

Comment #7768 by on

@#7767. Look at what happens when for the cocycle condition.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00AK. Beware of the difference between the letter 'O' and the digit '0'.