The Stacks project

Lemma 6.33.2. Let $X$ be a topological space. Let $X = \bigcup _{i\in I} U_ i$ be an open covering. Given any glueing data $(\mathcal{F}_ i, \varphi _{ij})$ for sheaves of sets with respect to the covering $X = \bigcup U_ i$ there exists a sheaf of sets $\mathcal{F}$ on $X$ together with isomorphisms

\[ \varphi _ i : \mathcal{F}|_{U_ i} \to \mathcal{F}_ i \]

such that the diagrams

\[ \xymatrix{ \mathcal{F}|_{U_ i \cap U_ j} \ar[r]_{\varphi _ i} \ar[d]_{\text{id}} & \mathcal{F}_ i|_{U_ i \cap U_ j} \ar[d]^{\varphi _{ij}} \\ \mathcal{F}|_{U_ i \cap U_ j} \ar[r]^{\varphi _ j} & \mathcal{F}_ j|_{U_ i \cap U_ j} } \]

are commutative.

Proof. First proof. In this proof we give a formula for the set of sections of $\mathcal{F}$ over an open $W \subset X$. Namely, we define

\[ \mathcal{F}(W) = \{ (s_ i)_{i \in I} \mid s_ i \in \mathcal{F}_ i(W \cap U_ i), \varphi _{ij}(s_ i|_{W \cap U_ i \cap U_ j}) = s_ j|_{W \cap U_ i \cap U_ j} \} . \]

Restriction mappings for $W' \subset W$ are defined by the restricting each of the $s_ i$ to $W' \cap U_ i$. The sheaf condition for $\mathcal{F}$ follows immediately from the sheaf condition for each of the $\mathcal{F}_ i$.

We still have to prove that $\mathcal{F}|_{U_ i}$ maps isomorphically to $\mathcal{F}_ i$. Let $W \subset U_ i$. In this case the condition in the definition of $\mathcal{F}(W)$ implies that $s_ j = \varphi _{ij}(s_ i|_{W \cap U_ j})$. And the commutativity of the diagrams in the definition of a glueing data assures that we may start with any section $s \in \mathcal{F}_ i(W)$ and obtain a compatible collection by setting $s_ i = s$ and $s_ j = \varphi _{ij}(s_ i|_{W \cap U_ j})$.

Second proof (sketch). Let $\mathcal{B}$ be the set of opens $U \subset X$ such that $U \subset U_ i$ for some $i \in I$. Then $\mathcal{B}$ is a base for the topology on $X$. For $U \in \mathcal{B}$ we pick $i \in I$ with $U \subset U_ i$ and we set $\mathcal{F}(U) = \mathcal{F}_ i(U)$. Using the isomorphisms $\varphi _{ij}$ we see that this prescription is “independent of the choice of $i$”. Using the restriction mappings of $\mathcal{F}_ i$ we find that $\mathcal{F}$ is a sheaf on $\mathcal{B}$. Finally, use Lemma 6.30.6 to extend $\mathcal{F}$ to a unique sheaf $\mathcal{F}$ on $X$. $\square$

Comments (4)

Comment #3423 by Samir Canning on

Maybe a slightly shorter proof can be given as follows: define a base for the topology on consisting of all the open sets of each and then define on the base in the obvious way. Then just use tag 009N to get a (unique) sheaf on .

Comment #5494 by Théo de Oliveira Santos on

Trivial typo: "for somje "

There are also:

  • 7 comment(s) on Section 6.33: Glueing sheaves

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00AL. Beware of the difference between the letter 'O' and the digit '0'.