Lemma 10.39.18. Let $R$ be a ring. Let $S \subset R$ be a multiplicative subset.

The localization $S^{-1}R$ is a flat $R$-algebra.

If $M$ is an $S^{-1}R$-module, then $M$ is a flat $R$-module if and only if $M$ is a flat $S^{-1}R$-module.

Suppose $M$ is an $R$-module. Then $M$ is a flat $R$-module if and only if $M_{\mathfrak p}$ is a flat $R_{\mathfrak p}$-module for all primes $\mathfrak p$ of $R$.

Suppose $M$ is an $R$-module. Then $M$ is a flat $R$-module if and only if $M_{\mathfrak m}$ is a flat $R_{\mathfrak m}$-module for all maximal ideals $\mathfrak m$ of $R$.

Suppose $R \to A$ is a ring map, $M$ is an $A$-module, and $g_1, \ldots , g_ m \in A$ are elements generating the unit ideal of $A$. Then $M$ is flat over $R$ if and only if each localization $M_{g_ i}$ is flat over $R$.

Suppose $R \to A$ is a ring map, and $M$ is an $A$-module. Then $M$ is a flat $R$-module if and only if the localization $M_{\mathfrak q}$ is a flat $R_{\mathfrak p}$-module (with $\mathfrak p$ the prime of $R$ lying under $\mathfrak q$) for all primes $\mathfrak q$ of $A$.

Suppose $R \to A$ is a ring map, and $M$ is an $A$-module. Then $M$ is a flat $R$-module if and only if the localization $M_{\mathfrak m}$ is a flat $R_{\mathfrak p}$-module (with $\mathfrak p = R \cap \mathfrak m$) for all maximal ideals $\mathfrak m$ of $A$.

## Comments (0)

There are also: