The Stacks project

Lemma 10.59.3. Suppose that $0 \to M' \to M \to M'' \to 0$ is a short exact sequence of finite $R$-modules. Then there exists a submodule $N \subset M'$ with finite colength $l$ and $c \geq 0$ such that

\[ \chi _{I, M}(n) = \chi _{I, M''}(n) + \chi _{I, N}(n - c) + l \]


\[ \varphi _{I, M}(n) = \varphi _{I, M''}(n) + \varphi _{I, N}(n - c) \]

for all $n \geq c$.

Proof. Note that $M/I^ nM \to M''/I^ nM''$ is surjective with kernel $M' / M' \cap I^ nM$. By the Artin-Rees Lemma 10.51.2 there exists a constant $c$ such that $M' \cap I^ nM = I^{n - c}(M' \cap I^ cM)$. Denote $N = M' \cap I^ cM$. Note that $I^ c M' \subset N \subset M'$. Hence $\text{length}_ R(M' / M' \cap I^ nM) = \text{length}_ R(M'/N) + \text{length}_ R(N/I^{n - c}N)$ for $n \geq c$. From the short exact sequence

\[ 0 \to M' / M' \cap I^ nM \to M/I^ nM \to M''/I^ nM'' \to 0 \]

and additivity of lengths (Lemma 10.52.3) we obtain the equality

\[ \chi _{I, M}(n - 1) = \chi _{I, M''}(n - 1) + \chi _{I, N}(n - c - 1) + \text{length}_ R(M'/N) \]

for $n \geq c$. We have $\varphi _{I, M}(n) = \chi _{I, M}(n) - \chi _{I, M}(n - 1)$ and similarly for the modules $M''$ and $N$. Hence we get $\varphi _{I, M}(n) = \varphi _{I, M''}(n) + \varphi _{I, N}(n-c)$ for $n \geq c$. $\square$

Comments (0)

There are also:

  • 1 comment(s) on Section 10.59: Noetherian local rings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00K6. Beware of the difference between the letter 'O' and the digit '0'.