Definition 10.60.10. Let $(R, \mathfrak m)$ be a Noetherian local ring of dimension $d$.

A

*system of parameters of $R$*is a sequence of elements $x_1, \ldots , x_ d \in \mathfrak m$ which generates an ideal of definition of $R$,if there exist $x_1, \ldots , x_ d \in \mathfrak m$ such that $\mathfrak m = (x_1, \ldots , x_ d)$ then we call $R$ a

*regular local ring*and $x_1, \ldots , x_ d$ a*regular system of parameters*.

## Comments (0)