Finite modules have filtrations such that successive quotients are cyclic modules.

Lemma 10.5.4. Let $R$ be a ring, and let $M$ be a finite $R$-module. There exists a filtration by $R$-submodules

$0 = M_0 \subset M_1 \subset \ldots \subset M_ n = M$

such that each quotient $M_ i/M_{i-1}$ is isomorphic to $R/I_ i$ for some ideal $I_ i$ of $R$.

Proof. By induction on the number of generators of $M$. Let $x_1, \ldots , x_ r \in M$ be a minimal number of generators. Let $M' = Rx_1 \subset M$. Then $M/M'$ has $r - 1$ generators and the induction hypothesis applies. And clearly $M' \cong R/I_1$ with $I_1 = \{ f \in R \mid fx_1 = 0\}$. $\square$

Comment #1107 by Evan Warner on

Suggested slogan: Finite modules have filtrations such that successive quotients are quotients of the underlying ring.

There are also:

• 9 comment(s) on Section 10.5: Finite modules and finitely presented modules

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).