Definition 10.72.1. Let R be a ring, and I \subset R an ideal. Let M be a finite R-module. The I-depth of M, denoted \text{depth}_ I(M), is defined as follows:
if IM \not= M, then \text{depth}_ I(M) is the supremum in \{ 0, 1, 2, \ldots , \infty \} of the lengths of M-regular sequences in I,
if IM = M we set \text{depth}_ I(M) = \infty .
If (R, \mathfrak m) is local we call \text{depth}_{\mathfrak m}(M) simply the depth of M.
Comments (0)