Lemma 10.68.5. Let $R, S$ be local rings. Let $R \to S$ be a flat local ring homomorphism. Let $x_1, \ldots , x_ r$ be a sequence in $R$. Let $M$ be an $R$-module. The following are equivalent

$x_1, \ldots , x_ r$ is an $M$-regular sequence in $R$, and

the images of $x_1, \ldots , x_ r$ in $S$ form a $M \otimes _ R S$-regular sequence.

## Comments (0)