Definition 10.105.1. A ring $R$ is said to be catenary if for any pair of prime ideals $\mathfrak p \subset \mathfrak q$, there exists an integer bounding the lengths of all finite chains of prime ideals $\mathfrak p = \mathfrak p_0 \subset \mathfrak p_1 \subset \ldots \subset \mathfrak p_ e = \mathfrak q$ and all maximal such chains have the same length.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #5869 by Bjorn Poonen on
Comment #6081 by Johan on