Lemma 10.109.1 (Schanuel's lemma). Let $R$ be a ring. Let $M$ be an $R$-module. Suppose that

$0 \to K \xrightarrow {c_1} P_1 \xrightarrow {p_1} M \to 0 \quad \text{and}\quad 0 \to L \xrightarrow {c_2} P_2 \xrightarrow {p_2} M \to 0$

are two short exact sequences, with $P_ i$ projective. Then $K \oplus P_2 \cong L \oplus P_1$. More precisely, there exist a commutative diagram

$\xymatrix{ 0 \ar[r] & K \oplus P_2 \ar[r]_{(c_1, \text{id})} \ar[d] & P_1 \oplus P_2 \ar[r]_{(p_1, 0)} \ar[d] & M \ar[r] \ar@{=}[d] & 0 \\ 0 \ar[r] & P_1 \oplus L \ar[r]^{(\text{id}, c_2)} & P_1 \oplus P_2 \ar[r]^{(0, p_2)} & M \ar[r] & 0 }$

whose vertical arrows are isomorphisms.

Proof. Consider the module $N$ defined by the short exact sequence $0 \to N \to P_1 \oplus P_2 \to M \to 0$, where the last map is the sum of the two maps $P_ i \to M$. It is easy to see that the projection $N \to P_1$ is surjective with kernel $L$, and that $N \to P_2$ is surjective with kernel $K$. Since $P_ i$ are projective we have $N \cong K \oplus P_2 \cong L \oplus P_1$. This proves the first statement.

To prove the second statement (and to reprove the first), choose $a : P_1 \to P_2$ and $b : P_2 \to P_1$ such that $p_1 = p_2 \circ a$ and $p_2 = p_1 \circ b$. This is possible because $P_1$ and $P_2$ are projective. Then we get a commutative diagram

$\xymatrix{ 0 \ar[r] & K \oplus P_2 \ar[r]_{(c_1, \text{id})} & P_1 \oplus P_2 \ar[r]_{(p_1, 0)} & M \ar[r] & 0 \\ 0 \ar[r] & N \ar[r] \ar[d] \ar[u] & P_1 \oplus P_2 \ar[r]_{(p_1, p_2)} \ar[d]_ S \ar[u]^ T & M \ar[r] \ar@{=}[d] \ar@{=}[u] & 0 \\ 0 \ar[r] & P_1 \oplus L \ar[r]^{(\text{id}, c_2)} & P_1 \oplus P_2 \ar[r]^{(0, p_2)} & M \ar[r] & 0 }$

with $T$ and $S$ given by the matrices

$S = \left( \begin{matrix} \text{id} & 0 \\ a & \text{id} \end{matrix} \right) \quad \text{and}\quad T = \left( \begin{matrix} \text{id} & b \\ 0 & \text{id} \end{matrix} \right)$

Then $S$, $T$ and the maps $N \to P_1 \oplus L$ and $N \to K \oplus P_2$ are isomorphisms as desired. $\square$

Comment #4019 by Matthé van der Lee on

In both diagrams, the maps $(0,p_{2})$ and $(p_{1},0)$ should be interchanged, and so should $S$ and $T$.

Comment #4020 by Matthé van der Lee on

In both diagrams, the maps $(0,p_{2})$ and $(p_{1},0)$ should be interchanged, and so should $S$ and $T$.

Comment #4128 by on

Thanks and fixed here. Ik weet niet of je wel Nederlands spreekt, maar in het geval van, dan laat ik even weten dat jou naam onder de v staat in de lijst van bijdragers. Groetjes, Johan

There are also:

• 1 comment(s) on Section 10.109: Rings of finite global dimension

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).