Lemma 10.118.1. Let $R$ be a local Noetherian domain with fraction field $K$. Assume $R$ is not a field. Then there exist $R \subset R' \subset K$ with

1. $R'$ local Noetherian of dimension $1$,

2. $R \to R'$ a local ring map, i.e., $R'$ dominates $R$, and

3. $R \to R'$ essentially of finite type.

Proof. Choose any valuation ring $A \subset K$ dominating $R$ (which exist by Lemma 10.49.2). Denote $v$ the corresponding valuation. Let $x_1, \ldots , x_ r$ be a minimal set of generators of the maximal ideal $\mathfrak m$ of $R$. We may and do assume that $v(x_ r) = \min \{ v(x_1), \ldots , v(x_ r)\}$. Consider the ring

$S = R[x_1/x_ r, x_2/x_ r, \ldots , x_{r - 1}/x_ r] \subset K.$

Note that $\mathfrak mS = x_ rS$ is a principal ideal. Note that $S \subset A$ and that $v(x_ r) > 0$, hence we see that $x_ rS \not= S$. Choose a minimal prime $\mathfrak q$ over $x_ rS$. Then $\text{height}(\mathfrak q) = 1$ by Lemma 10.59.10 and $\mathfrak q$ lies over $\mathfrak m$. Hence we see that $R' = S_{\mathfrak q}$ is a solution. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).