The Stacks project

Lemma 10.122.8. Let $R \to S$ be a ring map of finite type. Let $R \to R'$ be any ring map. Set $S' = R' \otimes _ R S$.

  1. The set $\{ \mathfrak q' \mid R' \to S' \text{ quasi-finite at }\mathfrak q'\} $ is the inverse image of the corresponding set of $\mathop{\mathrm{Spec}}(S)$ under the canonical map $\mathop{\mathrm{Spec}}(S') \to \mathop{\mathrm{Spec}}(S)$.

  2. If $\mathop{\mathrm{Spec}}(R') \to \mathop{\mathrm{Spec}}(R)$ is surjective, then $R \to S$ is quasi-finite if and only if $R' \to S'$ is quasi-finite.

  3. Any base change of a quasi-finite ring map is quasi-finite.

Proof. Let $\mathfrak p' \subset R'$ be a prime lying over $\mathfrak p \subset R$. Then the fibre ring $S' \otimes _{R'} \kappa (\mathfrak p')$ is the base change of the fibre ring $S \otimes _ R \kappa (\mathfrak p)$ by the field extension $\kappa (\mathfrak p) \to \kappa (\mathfrak p')$. Hence the first assertion follows from the invariance of dimension under field extension (Lemma 10.116.6) and Lemma 10.122.1. The stability of quasi-finite maps under base change follows from this and the stability of finite type property under base change. The second assertion follows since the assumption implies that given a prime $\mathfrak q \subset S$ we can find a prime $\mathfrak q' \subset S'$ lying over it. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00PP. Beware of the difference between the letter 'O' and the digit '0'.