Lemma 10.6.3. Let $R \to S$ be a ring map of finite presentation. For any surjection $\alpha : R[x_1, \ldots , x_ n] \to S$ the kernel of $\alpha $ is a finitely generated ideal in $R[x_1, \ldots , x_ n]$.

**Proof.**
Write $S = R[y_1, \ldots , y_ m]/(f_1, \ldots , f_ k)$. Choose $g_ i \in R[y_1, \ldots , y_ m]$ which are lifts of $\alpha (x_ i)$. Then we see that $S = R[x_ i, y_ j]/(f_ l, x_ i - g_ i)$. Choose $h_ j \in R[x_1, \ldots , x_ n]$ such that $\alpha (h_ j)$ corresponds to $y_ j \bmod (f_1, \ldots , f_ k)$. Consider the map $\psi : R[x_ i, y_ j] \to R[x_ i]$, $x_ i \mapsto x_ i$, $y_ j \mapsto h_ j$. Then the kernel of $\alpha $ is the image of $(f_ l, x_ i - g_ i)$ under $\psi $ and we win.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (3)

Comment #1099 by Filip Chindea on

Comment #1132 by Johan on

Comment #1158 by Filip Chindea on