Lemma 10.6.3. Let R \to S be a ring map of finite presentation. For any surjection \alpha : R[x_1, \ldots , x_ n] \to S the kernel of \alpha is a finitely generated ideal in R[x_1, \ldots , x_ n].
Proof. Write S = R[y_1, \ldots , y_ m]/(f_1, \ldots , f_ k). Choose g_ i \in R[y_1, \ldots , y_ m] which are lifts of \alpha (x_ i). Then we see that S = R[x_ i, y_ j]/(f_ l, x_ i - g_ i). Choose h_ j \in R[x_1, \ldots , x_ n] such that \alpha (h_ j) corresponds to y_ j \bmod (f_1, \ldots , f_ k). Consider the map \psi : R[x_ i, y_ j] \to R[x_ i], x_ i \mapsto x_ i, y_ j \mapsto h_ j. Then the kernel of \alpha is the image of (f_ l, x_ i - g_ i) under \psi and we win. \square
Comments (3)
Comment #1099 by Filip Chindea on
Comment #1132 by Johan on
Comment #1158 by Filip Chindea on
There are also: