Lemma 10.134.14. Let $R$ be a ring. Let $A_1 \to A_0$, and $B_1 \to B_0$ be two term complexes. Suppose that there exist morphisms of complexes $\varphi : A_\bullet \to B_\bullet $ and $\psi : B_\bullet \to A_\bullet $ such that $\varphi \circ \psi $ and $\psi \circ \varphi $ are homotopic to the identity maps. Then $A_1 \oplus B_0 \cong B_1 \oplus A_0$ as $R$-modules.

**Proof.**
Choose a map $h : A_0 \to A_1$ such that

Similarly, choose a map $h' : B_0 \to B_1$ such that

A trivial computation shows that

This shows that both matrices on the right hand side are invertible and proves the lemma. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #1721 by Yogesh More on

Comment #1760 by Johan on

There are also: