The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.132.14. Let $R$ be a ring. Let $A_1 \to A_0$, and $B_1 \to B_0$ be two term complexes. Suppose that there exist morphisms of complexes $\varphi : A_\bullet \to B_\bullet $ and $\psi : B_\bullet \to A_\bullet $ such that $\varphi \circ \psi $ and $\psi \circ \varphi $ are homotopic to the identity maps. Then $A_1 \oplus B_0 \cong B_1 \oplus A_0$ as $R$-modules.

Proof. Choose a map $h : A_0 \to A_1$ such that

\[ \text{id}_{A_1} - \psi _1 \circ \varphi _1 = h \circ d_ A \text{ and } \text{id}_{A_0} - \psi _0 \circ \varphi _0 = d_ A \circ h. \]

Similarly, choose a map $h' : B_0 \to B_1$ such that

\[ \text{id}_{B_1} - \varphi _1 \circ \psi _1 = h' \circ d_ B \text{ and } \text{id}_{B_0} - \varphi _0 \circ \psi _0 = d_ B \circ h'. \]

A trivial computation shows that

\[ \left( \begin{matrix} \text{id}_{A_1} & -h' \circ \psi _1 + h \circ \psi _0 \\ 0 & \text{id}_{B_0} \end{matrix} \right) = \left( \begin{matrix} \psi _1 & h \\ -d_ B & \varphi _0 \end{matrix} \right) \left( \begin{matrix} \varphi _1 & - h' \\ d_ A & \psi _0 \end{matrix} \right) \]

This shows that both matrices on the right hand side are invertible and proves the lemma. $\square$


Comments (2)

Comment #1721 by Yogesh More on

In the proof of tag 00S3, should be , and similarly . In the displayed equation asserting that that is a homotopy, you have instead of .

In Tag 00S4 line 2 of the statement of the theorem says "Let be the induced presentation", the should be a .

There are also:

  • 7 comment(s) on Section 10.132: The naive cotangent complex

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00S3. Beware of the difference between the letter 'O' and the digit '0'.