The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.133.7. Let $k$ be a field. Let $S$ be a local $k$-algebra essentially of finite type over $k$. The following are equivalent:

  1. $S$ is a complete intersection over $k$,

  2. for any surjection $R \to S$ with $R$ a regular local ring essentially of finite presentation over $k$ the ideal $\mathop{\mathrm{Ker}}(R \to S)$ can be generated by a regular sequence,

  3. for some surjection $R \to S$ with $R$ a regular local ring essentially of finite presentation over $k$ the ideal $\mathop{\mathrm{Ker}}(R \to S)$ can be generated by $\dim (R) - \dim (S)$ elements,

  4. there exists a global complete intersection $A$ over $k$ and a prime $\mathfrak a$ of $A$ such that $S \cong A_{\mathfrak a}$, and

  5. there exists a local complete intersection $A$ over $k$ and a prime $\mathfrak a$ of $A$ such that $S \cong A_{\mathfrak a}$.

Proof. It is clear that (2) implies (1) and (1) implies (3). It is also clear that (4) implies (5). Let us show that (3) implies (4). Thus we assume there exists a surjection $R \to S$ with $R$ a regular local ring essentially of finite presentation over $k$ such that the ideal $\mathop{\mathrm{Ker}}(R \to S)$ can be generated by $\dim (R) - \dim (S)$ elements. We may write $R = (k[x_1, \ldots , x_ n]/J)_{\mathfrak q}$ for some $J \subset k[x_1, \ldots , x_ n]$ and some prime $\mathfrak q \subset k[x_1, \ldots , x_ n]$ with $J \subset \mathfrak q$. Let $I \subset k[x_1, \ldots , x_ n]$ be the kernel of the map $k[x_1, \ldots , x_ n] \to S$ so that $S \cong (k[x_1, \ldots , x_ n]/I)_{\mathfrak q}$. By assumption $(I/J)_{\mathfrak q}$ is generated by $\dim (R) - \dim (S)$ elements. We conclude that $I_{\mathfrak q}$ can be generated by $\dim (k[x_1, \ldots , x_ n]_{\mathfrak q}) - \dim (S)$ elements by Lemma 10.133.6. From Lemma 10.133.4 we see that for some $g \in k[x_1, \ldots , x_ n]$, $g \not\in \mathfrak q$ the algebra $(k[x_1, \ldots , x_ n]/I)_ g$ is a global complete intersection and $S$ is isomorphic to a local ring of it.

To finish the proof of the lemma we have to show that (5) implies (2). Assume (5) and let $\pi : R \to S$ be a surjection with $R$ a regular local $k$-algebra essentially of finite type over $k$. By assumption we have $S = A_{\mathfrak a}$ for some local complete intersection $A$ over $k$. Choose a presentation $R = (k[y_1, \ldots , y_ m]/J)_{\mathfrak q}$ with $J \subset \mathfrak q \subset k[y_1, \ldots , y_ m]$. We may and do assume that $J$ is the kernel of the map $k[y_1, \ldots , y_ m] \to R$. Let $I \subset k[y_1, \ldots , y_ m]$ be the kernel of the map $k[y_1, \ldots , y_ m] \to S = A_{\mathfrak a}$. Then $J \subset I$ and $(I/J)_{\mathfrak q}$ is the kernel of the surjection $\pi : R \to S$. So $S = (k[y_1, \ldots , y_ m]/I)_{\mathfrak q}$.

By Lemma 10.125.7 we see that there exist $g \in A$, $g \not\in \mathfrak a$ and $g' \in k[y_1, \ldots , y_ m]$, $g' \not\in \mathfrak q$ such that $A_ g \cong (k[y_1, \ldots , y_ m]/I)_{g'}$. After replacing $A$ by $A_ g$ and $k[y_1, \ldots , y_ m]$ by $k[y_1, \ldots , y_{m + 1}]$ we may assume that $A \cong k[y_1, \ldots , y_ m]/I$. Consider the surjective maps of local rings

\[ k[y_1, \ldots , y_ m]_{\mathfrak q} \to R \to S. \]

We have to show that the kernel of $R \to S$ is generated by a regular sequence. By Lemma 10.133.4 we know that $k[y_1, \ldots , y_ m]_{\mathfrak q} \to A_{\mathfrak a} = S$ has this property (as $A$ is a local complete intersection over $k$). We win by Lemma 10.133.6. $\square$


Comments (1)

Comment #2359 by Simon Pepin Lehalleur on

Suggested slogan: On a local algebra essentially of finite type over a field, all reasonable (algebraic, geometric, local, global,...) notions of complete intersection coincide.

There are also:

  • 1 comment(s) on Section 10.133: Local complete intersections

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00SF. Beware of the difference between the letter 'O' and the digit '0'.