The Stacks project

Lemma 115.4.3. Let $R \to S$ be a ring map. Let $\mathfrak p \subset R$ be a prime. Let $\mathfrak q \subset S$ be a prime lying over $\mathfrak p$. Assume $S_{\mathfrak q}$ is essentially of finite type over $R_\mathfrak p$. Assume given

  1. an integer $n \geq 0$,

  2. a prime $\mathfrak a \subset \kappa (\mathfrak p)[x_1, \ldots , x_ n]$,

  3. a surjective $\kappa (\mathfrak p)$-homomorphism

    \[ \psi : (\kappa (\mathfrak p)[x_1, \ldots , x_ n])_{\mathfrak a} \longrightarrow S_{\mathfrak q}/\mathfrak p S_{\mathfrak q}, \]


  4. elements $\overline{f}_1, \ldots , \overline{f}_ e$ in $\mathop{\mathrm{Ker}}(\psi )$.

Then there exist

  1. an integer $m \geq 0$,

  2. and element $g \in S$, $g \not\in \mathfrak q$,

  3. a map

    \[ \Psi : R[x_1, \ldots , x_ n, x_{n + 1}, \ldots , x_{n + m}] \longrightarrow S_ g, \]


  4. elements $f_1, \ldots , f_ e, f_{e + 1}, \ldots , f_{e + m}$ of $\mathop{\mathrm{Ker}}(\Psi )$

such that

  1. the following diagram commutes

    \[ \xymatrix{ R[x_1, \ldots , x_{n + m}] \ar[d]_\Psi \ar[rr]_-{x_{n + j} \mapsto 0} & & (\kappa (\mathfrak p)[x_1, \ldots , x_ n])_{\mathfrak a} \ar[d]^\psi \\ S_ g \ar[rr] & & S_{\mathfrak q}/\mathfrak p S_{\mathfrak q} }, \]
  2. the element $f_ i$, $i \leq n$ maps to a unit times $\overline{f}_ i$ in the local ring

    \[ (\kappa (\mathfrak p)[x_1, \ldots , x_{n + m}])_{ (\mathfrak a, x_{n + 1}, \ldots , x_{n + m})}, \]
  3. the element $f_{e + j}$ maps to a unit times $x_{n + j}$ in the same local ring, and

  4. the induced map $R[x_1, \ldots , x_{n + m}]_{\mathfrak b} \to S_{\mathfrak q}$ is surjective, where $\mathfrak b = \Psi ^{-1}(\mathfrak qS_ g)$.

Proof. We claim that it suffices to prove the lemma in case $R$ and $S$ are local with maximal ideals $\mathfrak p$ and $\mathfrak q$. Namely, suppose we have constructed

\[ \Psi ' : R_{\mathfrak p}[x_1, \ldots , x_{n + m}] \longrightarrow S_{\mathfrak q} \]

and $f_1', \ldots , f_{e + m}' \in R_{\mathfrak p}[x_1, \ldots , x_{n + m}]$ with all the required properties. Then there exists an element $f \in R$, $f \not\in \mathfrak p$ such that each $ff_ k'$ comes from an element $f_ k \in R[x_1, \ldots , x_{n + m}]$. Moreover, for a suitable $g \in S$, $g \not\in \mathfrak q$ the elements $\Psi '(x_ i)$ are the image of elements $y_ i \in S_ g$. Let $\Psi $ be the $R$-algebra map defined by the rule $\Psi (x_ i) = y_ i$. Since $\Psi (f_ i)$ is zero in the localization $S_{\mathfrak q}$ we may after possibly replacing $g$ assume that $\Psi (f_ i) = 0$. This proves the claim.

Thus we may assume $R$ and $S$ are local with maximal ideals $\mathfrak p$ and $\mathfrak q$. Pick $y_1, \ldots , y_ n \in S$ such that $y_ i \bmod \mathfrak pS = \psi (x_ i)$. Let $y_{n + 1}, \ldots , y_{n + m} \in S$ be elements which generate an $R$-subalgebra of which $S$ is the localization. These exist by the assumption that $S$ is essentially of finite type over $R$. Since $\psi $ is surjective we may write $y_{n + j} \bmod \mathfrak pS = \psi (h_ j)$ for some $h_ j \in \kappa (\mathfrak p)[x_1, \ldots , x_ n]_{\mathfrak a}$. Write $h_ j = g_ j/d$, $g_ j \in \kappa (\mathfrak p)[x_1, \ldots , x_ n]$ for some common denominator $d \in \kappa (\mathfrak p)[x_1, \ldots , x_ n]$, $d \not\in \mathfrak a$. Choose lifts $G_ j, D \in R[x_1, \ldots , x_ n]$ of $g_ j$ and $d$. Set $y_{n + j}' = D(y_1, \ldots , y_ n) y_{n + j} - G_ j(y_1, \ldots , y_ n)$. By construction $y_{n + j}' \in \mathfrak p S$. It is clear that $y_1, \ldots , y_ n, y_ n', \ldots , y_{n + m}'$ generate an $R$-subalgebra of $S$ whose localization is $S$. We define

\[ \Psi : R[x_1, \ldots , x_{n + m}] \to S \]

to be the map that sends $x_ i$ to $y_ i$ for $i = 1, \ldots , n$ and $x_{n + j}$ to $y'_{n + j}$ for $j = 1, \ldots , m$. Properties (1) and (4) are clear by construction. Moreover the ideal $\mathfrak b$ maps onto the ideal $(\mathfrak a, x_{n + 1}, \ldots , x_{n + m})$ in the polynomial ring $\kappa (\mathfrak p)[x_1, \ldots , x_{n + m}]$.

Denote $J = \mathop{\mathrm{Ker}}(\Psi )$. We have a short exact sequence

\[ 0 \to J_{\mathfrak b} \to R[x_1, \ldots , x_{n + m}]_{\mathfrak b} \to S_{\mathfrak q} \to 0. \]

The surjectivity comes from our choice of $y_1, \ldots , y_ n, y_ n', \ldots , y_{n + m}'$ above. This implies that

\[ J_{\mathfrak b}/ \mathfrak pJ_{\mathfrak b} \to \kappa (\mathfrak p)[x_1, \ldots , x_{n + m}]_{ (\mathfrak a, x_{n + 1}, \ldots , x_{n + m})} \to S_{\mathfrak q}/\mathfrak pS_{\mathfrak q} \to 0 \]

is exact. By construction $x_ i$ maps to $\psi (x_ i)$ and $x_{n + j}$ maps to zero under the last map. Thus it is easy to choose $f_ i$ as in (2) and (3) of the lemma. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00SX. Beware of the difference between the letter 'O' and the digit '0'.