Lemma 10.143.5. Let R \to S be a ring map. Let \mathfrak q \subset S be a prime lying over \mathfrak p in R. If S/R is étale at \mathfrak q then
we have \mathfrak p S_{\mathfrak q} = \mathfrak qS_{\mathfrak q} is the maximal ideal of the local ring S_{\mathfrak q}, and
the field extension \kappa (\mathfrak q)/\kappa (\mathfrak p) is finite separable.
Comments (0)