The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.141.17. Let $R \to S$ be a standard étale morphism. There exists a ring map $R \to S'$ with the following properties

  1. $R \to S'$ is finite, finitely presented, and flat (in other words $S'$ is finite projective as an $R$-module),

  2. $\mathop{\mathrm{Spec}}(S') \to \mathop{\mathrm{Spec}}(R)$ is surjective,

  3. for every prime $\mathfrak q \subset S$, lying over $\mathfrak p \subset R$ and every prime $\mathfrak q' \subset S'$ lying over $\mathfrak p$ there exists a $g' \in S'$, $g' \not\in \mathfrak q'$ such that the ring map $R \to S'_{g'}$ factors through a map $\varphi : S \to S'_{g'}$ with $\varphi ^{-1}(\mathfrak q'S'_{g'}) = \mathfrak q$.

Proof. Let $S = R[x]_ g/(f)$ be a presentation of $S$ as in Definition 10.141.13. Write $f = x^ n + a_1 x^{n - 1} + \ldots + a_ n$ with $a_ i \in R$. By Lemma 10.134.9 there exists a finite locally free and faithfully flat ring map $R \to S'$ such that $f = \prod (x - \alpha _ i)$ for certain $\alpha _ i \in S'$. Hence $R \to S'$ satisfies conditions (1), (2). Let $\mathfrak q \subset R[x]/(f)$ be a prime ideal with $g \not\in \mathfrak q$ (i.e., it corresponds to a prime of $S$). Let $\mathfrak p = R \cap \mathfrak q$ and let $\mathfrak q' \subset S'$ be a prime lying over $\mathfrak p$. Note that there are $n$ maps of $R$-algebras

\begin{eqnarray*} \varphi _ i : R[x]/(f) & \longrightarrow & S' \\ x & \longmapsto & \alpha _ i \end{eqnarray*}

To finish the proof we have to show that for some $i$ we have (a) the image of $\varphi _ i(g)$ in $\kappa (\mathfrak q')$ is not zero, and (b) $\varphi _ i^{-1}(\mathfrak q') = \mathfrak q$. Because then we can just take $g' = \varphi _ i(g)$, and $\varphi = \varphi _ i$ for that $i$.

Let $\overline{f}$ denote the image of $f$ in $\kappa (\mathfrak p)[x]$. Note that as a point of $\mathop{\mathrm{Spec}}(\kappa (\mathfrak p)[x]/(\overline{f}))$ the prime $\mathfrak q$ corresponds to an irreducible factor $f_1$ of $\overline{f}$. Moreover, $g \not\in \mathfrak q$ means that $f_1$ does not divide the image $\overline{g}$ of $g$ in $\kappa (\mathfrak p)[x]$. Denote $\overline{\alpha }_1, \ldots , \overline{\alpha }_ n$ the images of $\alpha _1, \ldots , \alpha _ n$ in $\kappa (\mathfrak q')$. Note that the polynomial $\overline{f}$ splits completely in $\kappa (\mathfrak q')[x]$, namely

\[ \overline{f} = \prod \nolimits _ i (x - \overline{\alpha }_ i) \]

Moreover $\varphi _ i(g)$ reduces to $\overline{g}(\overline{\alpha }_ i)$. It follows we may pick $i$ such that $f_1(\overline{\alpha }_ i) = 0$ and $\overline{g}(\overline{\alpha }_ i) \not= 0$. For this $i$ properties (a) and (b) hold. Some details omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00UF. Beware of the difference between the letter 'O' and the digit '0'.