The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.141.19. Let $R$ be a ring. Let $f \in R[x]$ be a monic polynomial. Let $\mathfrak p$ be a prime of $R$. Let $f \bmod \mathfrak p = \overline{g} \overline{h}$ be a factorization of the image of $f$ in $\kappa (\mathfrak p)[x]$. If $\gcd (\overline{g}, \overline{h}) = 1$, then there exist

  1. an étale ring map $R \to R'$,

  2. a prime $\mathfrak p' \subset R'$ lying over $\mathfrak p$, and

  3. a factorization $f = g h$ in $R'[x]$

such that

  1. $\kappa (\mathfrak p) = \kappa (\mathfrak p')$,

  2. $\overline{g} = g \bmod \mathfrak p'$, $\overline{h} = h \bmod \mathfrak p'$, and

  3. the polynomials $g, h$ generate the unit ideal in $R'[x]$.

Proof. Suppose $\overline{g} = \overline{b}_0 x^ n + \overline{b}_1 x^{n - 1} + \ldots + \overline{b}_ n$, and $\overline{h} = \overline{c}_0 x^ m + \overline{c}_1 x^{m - 1} + \ldots + \overline{c}_ m$ with $\overline{b}_0, \overline{c}_0 \in \kappa (\mathfrak p)$ nonzero. After localizing $R$ at some element of $R$ not contained in $\mathfrak p$ we may assume $\overline{b}_0$ is the image of an invertible element $b_0 \in R$. Replacing $\overline{g}$ by $\overline{g}/b_0$ and $\overline{h}$ by $b_0\overline{h}$ we reduce to the case where $\overline{g}$, $\overline{h}$ are monic (verification omitted). Say $\overline{g} = x^ n + \overline{b}_1 x^{n - 1} + \ldots + \overline{b}_ n$, and $\overline{h} = x^ m + \overline{c}_1 x^{m - 1} + \ldots + \overline{c}_ m$. Write $f = x^{n + m} + a_1 x^{n - 1} + \ldots + a_{n + m}$. Consider the fibre product

\[ R' = R \otimes _{\mathbf{Z}[a_1, \ldots , a_{n + m}]} \mathbf{Z}[b_1, \ldots , b_ n, c_1, \ldots , c_ m] \]

where the map $\mathbf{Z}[a_ k] \to \mathbf{Z}[b_ i, c_ j]$ is as in Examples 10.134.7 and 10.141.12. By construction there is an $R$-algebra map

\[ R' = R \otimes _{\mathbf{Z}[a_1, \ldots , a_{n + m}]} \mathbf{Z}[b_1, \ldots , b_ n, c_1, \ldots , c_ m] \longrightarrow \kappa (\mathfrak p) \]

which maps $b_ i$ to $\overline{b}_ i$ and $c_ j$ to $\overline{c}_ j$. Denote $\mathfrak p' \subset R'$ the kernel of this map. Since by assumption the polynomials $\overline{g}, \overline{h}$ are relatively prime we see that the element $\Delta = \text{Res}_ x(g, h) \in \mathbf{Z}[b_ i, c_ j]$ (see Example 10.141.12) does not map to zero in $\kappa (\mathfrak p)$ under the displayed map. We conclude that $R \to R'$ is étale at $\mathfrak p'$. In fact a solution to the problem posed in the lemma is the ring map $R \to R'[1/\Delta ]$ and the prime $\mathfrak p' R'[1/\Delta ]$. Because $\text{Res}_ x(f, g)$ is invertible in this ring the Sylvester matrix is invertible over $R'$ and hence $1 = a g + b h$ for some $a, b \in R'[x]$ see Example 10.141.12. $\square$


Comments (1)

Comment #3965 by Manuel Hoff on

Typo: In the sentence of the proof, should be replaced by two times.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00UH. Beware of the difference between the letter 'O' and the digit '0'.