Example 7.7.4. Let $X$ be a topological space. Let us consider the site $X'_{Zar}$ which is the same as the site $X_{Zar}$ of Example 7.6.4 except that we disallow the empty covering of the empty set. In other words, we do allow the covering $\{ \emptyset \to \emptyset \} $ but we do not allow the covering whose index set is empty. It is easy to show that this still defines a site. However, we claim that the sheaves on $X'_{Zar}$ are different from the sheaves on $X_{Zar}$. For example, as an extreme case consider the situation where $X = \{ p\} $ is a singleton. Then the objects of $X'_{Zar}$ are $\emptyset , X$ and every covering of $\emptyset $ can be refined by $\{ \emptyset \to \emptyset \} $ and every covering of $X$ by $\{ X \to X\} $. Clearly, a sheaf on this is given by any choice of a set $\mathcal{F}(\emptyset )$ and any choice of a set $\mathcal{F}(X)$, together with any restriction map $\mathcal{F}(X) \to \mathcal{F}(\emptyset )$. Thus sheaves on $X'_{Zar}$ are the same as usual sheaves on the two point space $\{ \eta , p\} $ with open sets $\{ \emptyset , \{ \eta \} , \{ p, \eta \} \} $. In general sheaves on $X'_{Zar}$ are the same as sheaves on the space $X \amalg \{ \eta \} $, with opens given by the empty set and any set of the form $U \cup \{ \eta \} $ for $U \subset X$ open.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (3)
Comment #1120 by anonym on
Comment #1141 by Johan on
Comment #3604 by David Holmes on
There are also: