Definition 7.15.1 (Topoi). A topos is the category \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) of sheaves on a site \mathcal{C}.
Let \mathcal{C}, \mathcal{D} be sites. A morphism of topoi f from \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) is given by a pair of functors f_* : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) and f^{-1} : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) such that
we have
\mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{D})}(f^{-1}\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{C})}(\mathcal{G}, f_*\mathcal{F})bifunctorially, and
the functor f^{-1} commutes with finite limits, i.e., is left exact.
Let \mathcal{C}, \mathcal{D}, \mathcal{E} be sites. Given morphisms of topoi f :\mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) and g :\mathop{\mathit{Sh}}\nolimits (\mathcal{E}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) the composition f\circ g is the morphism of topoi defined by the functors (f \circ g)_* = f_* \circ g_* and (f \circ g)^{-1} = g^{-1} \circ f^{-1}.
Comments (0)
There are also: