Lemma 7.21.5. Let $\mathcal{C}$ and $\mathcal{D}$ be sites. Let $u : \mathcal{C} \to \mathcal{D}$ be a functor. Assume that
$u$ is cocontinuous, and
$u$ is continuous.
Sheafification is redundant in topoi morphisms associated to simultaneously continuous and cocontinuous site functors.
Lemma 7.21.5. Let $\mathcal{C}$ and $\mathcal{D}$ be sites. Let $u : \mathcal{C} \to \mathcal{D}$ be a functor. Assume that
$u$ is cocontinuous, and
$u$ is continuous.
Let $g : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D})$ be the associated morphism of topoi. Then
sheafification in the formula $g^{-1} = (u^ p\ )^\# $ is unnecessary, in other words $g^{-1}(\mathcal{G})(U) = \mathcal{G}(u(U))$,
$g^{-1}$ has a left adjoint $g_{!} = (u_ p\ )^\# $, and
$g^{-1}$ commutes with arbitrary limits and colimits.
Proof. By Lemma 7.13.2 for any sheaf $\mathcal{G}$ on $\mathcal{D}$ the presheaf $u^ p\mathcal{G}$ is a sheaf on $\mathcal{C}$. And then we see the adjointness by the following string of equalities
The statement on limits and colimits follows from the discussion in Categories, Section 4.24. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #7347 by Alejandro González Nevado on