Lemma 7.22.2. In the situation of Lemma 7.22.1. We have $g_* = v^ s = v^ p$ and $g^{-1} = v_ s = (v_ p\ )^\# $. If $v$ is continuous then $v$ defines a morphism of sites $f$ from $\mathcal{C}$ to $\mathcal{D}$ whose associated morphism of topoi is equal to the morphism $g$ associated to the cocontinuous functor $u$. In other words, a continuous functor which has a cocontinuous left adjoint defines a morphism of sites.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)