The Stacks project

Lemma 7.22.2. Notation and assumptions as in Lemma 7.22.1. If in addition $v$ is continuous then $v$ defines a morphism of sites $f : \mathcal{C} \to \mathcal{D}$ whose associated morphism of topoi is equal to $g$.

Proof. We will use the results of Lemma 7.22.1 without further mention. To prove that $v$ defines a morphism of sites $f$ as in the statement of the lemma, we have to show that $v_ s$ is an exact functor (see Definition 7.14.1). Since $v_ s\mathcal{G} = (v_ p\mathcal{G})^\# = g^{-1}\mathcal{G}$ this follows from the fact that $g$ is a morphism of topoi. Then we see that $f^{-1} = v_ s = g^{-1}$ and we find that $f = g$ as morphisms of topoi. $\square$


Comments (0)

There are also:

  • 1 comment(s) on Section 7.22: Cocontinuous functors which have a right adjoint

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00XY. Beware of the difference between the letter 'O' and the digit '0'.