Lemma 7.32.4. For any functor $u : \mathcal{C} \to \textit{Sets}$. The functor $u^ p$ is a right adjoint to the stalk functor on presheaves.

Proof. Let $\mathcal{F}$ be a presheaf on $\mathcal{C}$. Let $E$ be a set. A morphism $\mathcal{F} \to u^ pE$ is given by a compatible system of maps $\mathcal{F}(U) \to \text{Map}(u(U), E)$, i.e., a compatible system of maps $\mathcal{F}(U) \times u(U) \to E$. And by definition of $\mathcal{F}_ p$ a map $\mathcal{F}_ p \to E$ is given by a rule associating with each triple $(U, x, \sigma )$ an element in $E$ such that equivalent triples map to the same element, see discussion surrounding Equation (7.32.1.1). This also means a compatible system of maps $\mathcal{F}(U) \times u(U) \to E$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00Y7. Beware of the difference between the letter 'O' and the digit '0'.