Definition 7.44.1. Let $f : \mathcal{D} \to \mathcal{C}$ be a morphism of sites given by a functor $u : \mathcal{C} \to \mathcal{D}$. We define the pushforward functor for presheaves of algebraic structures by the rule $u^ p\mathcal{F}(U) = \mathcal{F}(uU)$, and for sheaves of algebraic structures by the same rule, namely $f_*\mathcal{F}(U) = \mathcal{F}(uU)$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)