The Stacks project

Theorem 7.50.2. Let $\mathcal{C}$ be a category. Let $J$, $J'$ be topologies on $\mathcal{C}$. The following are equivalent

  1. $J = J'$,

  2. sheaves for the topology $J$ are the same as sheaves for the topology $J'$.

Proof. It is a tautology that if $J = J'$ then the notions of sheaves are the same. Conversely, Lemma 7.50.1 characterizes covering sieves in terms of the sheafification functor. But the sheafification functor $\textit{PSh}(\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}, J)$ is the left adjoint of the inclusion functor $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}, J) \to \textit{PSh}(\mathcal{C})$. Hence if the subcategories $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}, J)$ and $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}, J')$ are the same, then the sheafification functors are the same and hence the collections of covering sieves are the same. $\square$

Comments (0)

There are also:

  • 3 comment(s) on Section 7.50: Topologies and sheaves

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00ZP. Beware of the difference between the letter 'O' and the digit '0'.