Lemma 13.4.1. Let $\mathcal{D}$ be a pre-triangulated category. Let $(X, Y, Z, f, g, h)$ be a distinguished triangle. Then $g \circ f = 0$, $h \circ g = 0$ and $f[1] \circ h = 0$.
Proof. By TR1 we know $(X, X, 0, 1, 0, 0)$ is a distinguished triangle. Apply TR3 to
\[ \xymatrix{ X \ar[r] \ar[d]^1 & X \ar[r] \ar[d]^ f & 0 \ar[r] \ar@{-->}[d] & X[1] \ar[d]^{1[1]} \\ X \ar[r]^ f & Y \ar[r]^ g & Z \ar[r]^ h & X[1] } \]
Of course the dotted arrow is the zero map. Hence the commutativity of the diagram implies that $g \circ f = 0$. For the other cases rotate the triangle, i.e., apply TR2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: