Lemma 13.23.5. Let $\mathcal{A}$ be an abelian category with enough injectives. Any resolution functor $j : K^{+}(\mathcal{A}) \to K^{+}(\mathcal{I})$ is exact.
Proof. Denote $i_{K^\bullet } : K^\bullet \to j(K^\bullet )$ the canonical maps of Definition 13.23.2. First we discuss the existence of the functorial isomorphism $j(K^\bullet [1]) \to j(K^\bullet )[1]$. Consider the diagram
By Lemmas 13.18.6 and 13.18.7 there exists a unique dotted arrow $\xi _{K^\bullet }$ in $K^{+}(\mathcal{I})$ making the diagram commute in $K^{+}(\mathcal{A})$. We omit the verification that this gives a functorial isomorphism. (Hint: use Lemma 13.18.7 again.)
Let $(K^\bullet , L^\bullet , M^\bullet , f, g, h)$ be a distinguished triangle of $K^{+}(\mathcal{A})$. We have to show that $(j(K^\bullet ), j(L^\bullet ), j(M^\bullet ), j(f), j(g), \xi _{K^\bullet } \circ j(h))$ is a distinguished triangle of $K^{+}(\mathcal{I})$. Note that we have a commutative diagram
in $K^{+}(\mathcal{A})$ whose vertical arrows are the quasi-isomorphisms $i_ K, i_ L, i_ M$. Hence we see that the image of $(j(K^\bullet ), j(L^\bullet ), j(M^\bullet ), j(f), j(g), \xi _{K^\bullet } \circ j(h))$ in $D^{+}(\mathcal{A})$ is isomorphic to a distinguished triangle and hence a distinguished triangle by TR1. Thus we see from Lemma 13.4.18 that $(j(K^\bullet ), j(L^\bullet ), j(M^\bullet ), j(f), j(g), \xi _{K^\bullet } \circ j(h))$ is a distinguished triangle in $K^{+}(\mathcal{I})$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #9471 by Elías Guisado on
There are also: