Lemma 13.20.3. Let \mathcal{A} be an abelian category with enough injectives. Let F : \mathcal{A} \to \mathcal{B} be an additive functor.
The functor RF is an exact functor D^{+}(\mathcal{A}) \to D^{+}(\mathcal{B}).
The functor RF induces an exact functor K^{+}(\mathcal{A}) \to D^{+}(\mathcal{B}).
The functor RF induces a \delta -functor \text{Comp}^{+}(\mathcal{A}) \to D^{+}(\mathcal{B}).
The functor RF induces a \delta -functor \mathcal{A} \to D^{+}(\mathcal{B}).
Comments (0)