Definition 14.11.1. Let $U$ be a simplicial set. We say $x$ is an *$n$-simplex of $U$* to signify that $x$ is an element of $U_ n$. We say that $y$ is the $j$th *face of $x$* to signify that $d^ n_ jx = y$. We say that $z$ is the $j$th *degeneracy of $x$* if $z = s^ n_ jx$. A simplex is called *degenerate* if it is the degeneracy of another simplex.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #8516 by Takagi Benseki on

Comment #9118 by Stacks project on